Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Heliyon ; 10(9): e29853, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699038

RESUMO

Liver disease is a severe public health concern worldwide. There is a close relationship between the liver and cytokines, and liver inflammation from a variety of causes leads to the release and activation of cytokines. The functions of cytokines are complex and variable, and are closely related to their cellular origin, target molecules and mode of action. Interleukin (IL)-20 has been studied as a pro-inflammatory cytokine that is expressed and regulated in some diseases. Furthermore, accumulating evidences has shown that IL-20 is highly expressed in clinical samples from patients with liver disease, promoting the production of pro-inflammatory molecules involved in liver disease progression, and antagonists of IL-20 can effectively inhibit liver injury and produce protective effects. This review highlights the potential of targeting IL-20 in liver diseases, elucidates the potential mechanisms of IL-20 inducing liver injury, and suggests multiple viable strategies to mitigate the pro-inflammatory response to IL-20. Genomic CRISPR/Cas9-based screens may be a feasible way to further explore the signaling pathways and regulation of IL-20 in liver diseases. Nanovector systems targeting IL-20 offer new possibilities for the treatment and prevention of liver diseases.

2.
Heliyon ; 10(1): e23184, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163209

RESUMO

Papillary renal cell carcinoma (PRCC) is a highly heterogeneous cancer, and PRCC patients with advanced/metastatic subgroup showed obviously shorter survival compared to other kinds of renal cell carcinomas. However, the molecular mechanism and prognostic predictors of PRCC remain unclear and are worth deep studying. The aim of this study is to identify novel molecular classification and construct a reliable prognostic model for PRCC. The expression data were retrieved from TCGA, GEO, GTEx and TARGET databases. CRISPR data was obtained from Depmap database. The key genes were selected by the intersection of CRISPR-Cas9 screening genes, differentially expressed genes, and genes with prognostic capacity in PRCC. The molecular classification was identified based on the key genes. Drug sensitivity, tumor microenvironment, somatic mutation, and survival were compared among the novel classification. A prognostic model utilizing multiple machine learning algorithms based on the key genes was developed and tested by independent external validation set. Our study identified three clusters (C1, C2 and C3) in PRCC based on 41 key genes. C2 had obviously higher expression of the key genes and lower survival than C1 and C3. Significant differences in drug sensitivity, tumor microenvironment, and mutation landscape have been observed among the three clusters. By utilizing 21 combinations of 9 machine learning algorithms, 9 out of 41 genes were chosen to construct a robust prognostic signature, which exhibited good prognostic ability. SERPINH1 was identified as a critical gene for its strong prognostic ability in PRCC by univariate and multiple Cox regression analyses. Quantitative real-time PCR and Western blot demonstrated that SERPINH1 mRNA and protein were highly expressed in PRCC cells compared with normal human renal cells. This study exhibited a new molecular classification and prognostic signature for PRCC, which may provide a potential biomarker and therapy target for PRCC patients.

3.
J Nanobiotechnology ; 22(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169389

RESUMO

Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite , Nefrite Lúpica , Humanos , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Rim/metabolismo , Nanotecnologia
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 270-279, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38282474

RESUMO

Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-ß and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Insuficiência Cardíaca , Isoflavonas , Humanos , Ratos , Animais , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Cardiomiopatias/metabolismo , Fibrose
5.
Clin Immunol ; 257: 109838, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935312

RESUMO

The role of m6A in ankylosing spondylitis (AS) remains largely obscure. In this study, we found that m6A modification was decreased in T cells of AS, and the abnormal m6A modification was attributed to the downregulation of methyltransferase-like 14 (METTL14). METTL14 exerted a critical role in regulating autophagy activity and inflammation via targeting Forkhead box O3a (FOXO3a). Mechanistically, the loss of METTL14 decreased the expression of FOXO3a, leading to the damage of autophagic flux and the aggravation of inflammation. Inversely, the forced expression of METTL14 upregulated the expression of FOXO3a, thereby activating autophagy and alleviating inflammation. Furthermore, our results revealed that METTL14 targeted FOXO3a mRNA and regulated its expression and stability in a m6A-dependent manner. These findings uncovered the functional importance of m6A methylation mechanisms in the regulation of autophagy and inflammation, which expanded our understanding of this interaction and was critical for the development of therapeutic strategies for AS.


Assuntos
Adenina , Autofagia , Proteína Forkhead Box O3 , Inflamação , Metiltransferases , Espondilite Anquilosante , Humanos , Adenina/metabolismo , Autofagia/genética , Inflamação/genética , Metiltransferases/genética , Espondilite Anquilosante/genética , Espondilite Anquilosante/patologia , Proteína Forkhead Box O3/metabolismo
6.
Medicine (Baltimore) ; 102(34): e34792, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653783

RESUMO

The problem-based learning (PBL) is increasingly used in undergraduate education. However, the application of integrated PBL to medical undergraduate education has not been well assessed. An observational study was designed to compare integrated PBL combined with lecture-based classroom (LBC) with traditional LBC teaching in 2 semesters of a Medical School in China. This study was conducted from March 2021 to July 2022. A total of 118 undergraduates majoring in clinical medicine were randomly allocated in 2 groups, 1 group receiving the integrated PBL + LBC teaching (experimental group, n = 60) and another group receiving LBC teaching (control group, n = 58). The experimental group attended the integrated PBL courses for the basic and clinical medicine conducted in the 6th and 8th semesters, respectively, as well as taking the LBC courses. The experimental group was required to preview the course materials before class, make presentations in class and take online feedback questionnaires after class, while the control group was required to preview the textbooks and listen to the traditional LBC courses. The students' scores of these 2 groups were compared, and feedback questionnaires were performed to evaluate the effectiveness of the experimental group over the control group. Results showed that the experimental group scored significantly higher than the control group in Clinical Skills (95% confidence interval [CI] 4.19-5.89), Internal Medicine I (95% CI: 1.85-9.93), Internal Medicine II (95% CI: 8.07-15.90), Introduction to Surgery (95% CI: 5.08-10.25), Surgery (General Surgery) (95% CI: 7.82-12.72), Surgery (Specialty) (95% CI: 6.47-9.97), and Clinical Medical Level Test (95% CI: 1.60-5.15) (all P < .01). In the feedback questionnaires of integrated PBL, up to 80% and 90% of students were satisfied with the teaching methods and lecturers, respectively. More than 80% of students agreed that the integrated PBL improved their abilities to learn independently, understand knowledge, and to raise, analyze and solve problems. In terms of stress in and out of class, a small number of students, <36.7%, felt stressed. The integrated PBL combined with LBC is an effective teaching approach, which may provide new ideas for teaching research and reform on undergraduate medical education in clinical medicine specialty and other medical majors.


Assuntos
Educação de Graduação em Medicina , Aprendizagem Baseada em Problemas , Humanos , Faculdades de Medicina , China , Medicina Interna
7.
Eur J Pharmacol ; 955: 175874, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394029

RESUMO

Vascular dementia (VD) is one of the most common causes of dementia, taking account for about 20% of all cases. Although studies have found that selenium supplementation can improve the cognitive ability of Alzheimer's patients, there is currently no research on the cognitive impairment caused by VD. This study aimed to investigate the role and mechanism of Amorphous selenium nanodots (A SeNDs) in the prevention of VD. The bilateral common carotid artery occlusion (BCCAO) method was used to establish a VD model. The neuroprotective effect of A SeNDs was evaluated by Morris water maze, Transcranial Doppler TCD, hematoxylin-eosin (HE) staining, Neuron-specific nuclear protein (Neu N) staining and Golgi staining. Detect the expression levels of oxidative stress and Calcium-calmodulin dependent protein kinase II (CaMK II), N-methyl-D-aspartate receptor subunit NR2A, and postsynaptic dense protein 95 (PSD95). Finally, measure the concentration of calcium ions in neuronal cells. The results showed that A SeNDs could significantly improve the learning and memory ability of VD rats, restore the posterior arterial blood flow of the brain, improve the neuronal morphology and dendritic remodeling of pyramidal cells in hippocampal CA1 area, reduce the level of oxidative stress in VD rats, increase the expression of NR2A, PSD95, CaMK II proteins and reduce intracellular calcium ion concentration, but the addition of selective NR2A antagonist NVP-AAMO77 eliminated these benefits. It suggests that A SeNDs may improve cognitive dysfunction in vascular dementia rats by regulating the NMDAR pathway.


Assuntos
Demência Vascular , Selênio , Ratos , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cálcio/metabolismo , Estresse Oxidativo , Hipocampo , Neurônios/metabolismo , Aprendizagem em Labirinto
8.
Redox Rep ; 28(1): 2224607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37338021

RESUMO

The long non-coding RNA, maternally expressed gene 3 (MEG3), are involved in myocardial fibrosis and compensatory hypertrophy, but its role on cardiomyocyte apoptosis and autophagy in heart failure (HF) remains unclear. The aim of this study was to investigate the effect of MEG3 on cardiomyocyte apoptosis and autophagy and the underlying mechanism. A mouse model of HF was established by subcutaneous injection of isoproterenol (ISO) for 14 days, and an in vitro oxidative stress injury model was replicated with H2O2 for 6 h. SiRNA-MEG3 was administered in mice and in vitro cardiomyocytes to knock down MEG3 expression. Our results showed that cardiac silencing of MEG3 can significantly ameliorate ISO-induced cardiac dysfunction, hypertrophy, oxidative stress, apoptosis, excessive autophagy and fibrosis induced by ISO. In addition, inhibition of MEG3 attenuated H2O2-induced cardiomyocyte oxidative stress, apoptosis and autophagy in vitro. Downregulation of MEG3 significantly inhibited excessive cardiomyocyte apoptosis and autophagy induced by ISO and H2O2 through miRNA-129-5p/ATG14/Akt signaling pathways, and reduced H2O2-induced cardiomyocyte apoptosis by inhibiting autophagy. In conclusion, inhibition of MEG3 ameliorates the maladaptive cardiac remodeling induced by ISO, probably by targeting the miRNA-129-5p/ATG14/Akt signaling pathway and may provide a tool for pharmaceutical intervention.


Assuntos
Insuficiência Cardíaca , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Apoptose/genética , Autofagia/genética , Insuficiência Cardíaca/genética , Peróxido de Hidrogênio/farmacologia , Hipertrofia/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética
9.
Front Immunol ; 14: 1136652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936959

RESUMO

Human decidual natural killer (dNK) cells are a unique type of tissue-resident NK cells at the maternal-fetal interface. dNK cells are likely to have pivotal roles during pregnancy, including in maternal-fetal immune tolerance, trophoblast invasion, and fetal development. However, detailed insights into these cells are still lacking. In this study, we performed metabolomic and proteomic analyses on human NK cells derived from decidua and peripheral blood. We found that 77 metabolites were significantly changed in dNK cells. Notably, compared to peripheral blood NK (pNK) cells, 29 metabolites involved in glycerophospholipid and glutathione metabolism were significantly decreased in dNK cells. Moreover, we found that 394 proteins were differentially expressed in dNK cells. Pathway analyses and network enrichment analyses identified 110 differentially expressed proteins involved in focal adhesion, cytoskeleton remodeling, oxidoreductase activity, and fatty acid metabolism in dNK cells. The integrated proteomic and metabolomic analyses revealed significant downregulation in glutathione metabolism in dNK cells compared to pNK cells. Our data indicate that human dNK cells have unique metabolism and protein-expression features, likely regulating their function in pregnancy and immunity.


Assuntos
Células Matadoras Naturais , Proteômica , Gravidez , Feminino , Humanos , Regulação para Baixo , Glutationa/metabolismo
10.
Int Immunopharmacol ; 118: 110008, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989899

RESUMO

Diabetic cardiomyopathy (DCM) is a kind of idiopathic heart disease, which is one of the main complications of diabetes and seriously threatens the life of diabetic patients. Rubiadin, an anthraquinone compound extracted from the stems and roots of rubiaceae, has been widely discussed for its anti-diabetes, anti-oxidation and other pharmacological effects. However, Rubiadin can cause drug-induced liver injury. Therefore, A-cycloglycosylated derivative of Rubiadin (ACDR) was obtained by modifying its structure. The purpose of this study was to investigate the effect of ACDR on DCM cardiac injury and its mechanism. The DCM animal model was established by streptozotocin, and the success of DCM was verified by blood glucose level, echocardiographic evidence of impaired myocardial functions along with enhanced myocardial fibrosis. We performed liver function tests, morphological staining of the heart and tests for oxidative stress to evaluate cardiac functional and structural changes. Finally, the expression of Na+/H+ exchanger (NHE1) protein was analyzed by immunohistochemistry and western bolt, and the expression of hairy/enhancer-of-split related with YRPW motif 1 (Hey1) and P-p38 protein was detected by immunofluorescence chemistry and western blotting. The results showed that ACDR can improve cardiac dysfunction, reduce myocardial injury, reduce oxidative stress, and protect the liver in DCM rats. Interestingly, all variations were countered by LiCl. Our study suggests that, along with controlling hyperglycemia, ACDR may improve DCM by reducing NHE1 expression, further inhibiting P-p38 activity and increasing Hey1 expression to reduce oxidative stress.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ratos , Animais , Cardiomiopatias Diabéticas/etiologia , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Antraquinonas/farmacologia
11.
Antioxidants (Basel) ; 11(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421426

RESUMO

In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.

12.
Toxicology ; 481: 153348, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209947

RESUMO

Sorafenib (Sor), a novel multi-target anticancer drug also induces severe toxicity in heart, while the mechanism of its cardiotoxicity remains to be fully elucidated. Dysregulation of autophagy and mitochondrial dynamics imbalance have been implicated in cardiomyocyte death. The aim of this study is to test the hypothesis that Sor disrupts autophagy and mitochondrial dynamics, thereby aggravating Sor-induced oxidative stress damage to cardiomyocytes. Our results revealed that Sor (≥ 5 µM) concentration- and time-dependently reduced cell viability and induced apoptosis in H9c2 myoblasts. Sor treatment promoted intracellular reactive oxygen species (ROS) generation, and subsequent Ca2+ overload as well as apoptosis, which were abolished by the ROS scavenger MPG. Sor inhibited the basal autophagy activity of cells, as supported by the fact that ERK1/2 inhibition-dependent decreases of autophagosomes and autolysosomes, and p62 accumulation in a concentration- and time-dependent manner. Improving autophagy with rapamycin abrogated Sor-induced ROS and Ca2+ overloads, and cell apoptosis. Furthermore, Sor compromised mitochondrial morphology and caused excessive mitochondrial fragmentation in cells. The imbalance of mitochondrial dynamics was attributed to ROS-mediated CaMKII overactivity, and increased phosphorylation of dynamin-related protein 1 (phosph-Drp1). Suppression of CaMKII with KN-93 or mitochondrial fission with mitochondrial division inhibitor-1 (Mdivi-1) attenuated Sor-induced ROS and Ca2+ overloads as well as apoptosis. In conclusion, these results provide the first evidence that impairments in autophagy and mitochondrial dynamics are involved in Sor-induced cardiomyocyte apoptosis. The present study may provide a potential strategy for preventing or reducing cardiotoxicity of Sor.


Assuntos
Dinâmica Mitocondrial , Miócitos Cardíacos , Humanos , Sorafenibe/toxicidade , Sorafenibe/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dinaminas/metabolismo , Apoptose , Autofagia
13.
Int Immunopharmacol ; 113(Pt A): 109274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252472

RESUMO

Doxorubicin (DOX), a broad-spectrum anti-tumor drug, has severe cardiotoxic side effects that limit its clinical application. Perillaldehyde (PAE) is the main component of volatile oil extracted from the stems and leaves of Herbaceous plant-perilla, which demonstrates antioxidant, anti-inflammatory, hypolipidemic, and other health functions. The present study aimed to explore the protective effect of perillaldehyde on DOX-induced cardiotoxicity in rats and to confirm its possible mechanism. The results showed that PAE could significantly improve cardiac function, alleviate myocardial fibrosis, and attenuate oxidative stress and inflammatory responses in DOX-induced cardiotoxicity in rats. Mechanistically, PAE could DOX-induced cardiotoxicity, which is related to its regulation of the PI3K/Akt signaling pathway and inhibition of NHE1 phosphorylation. Therefore, the finding demonstrates that perillaldehyde may be a promising cardioprotective agent for the prevention and treatment of cardiotoxicity caused by DOX.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Cardiotoxicidade/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Apoptose , Miócitos Cardíacos/metabolismo
14.
Front Oncol ; 11: 712371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722259

RESUMO

Tumor endothelial marker 8 (TEM8), also known as ANTXR1, was highly expressed in cancers, and was identified as a biomarker for early diagnosis and prognosis in some cancers. However, the clinical role and molecular mechanisms of TEM8 in lung adenocarcinoma (LUAD) are still unclear. The present study aimed to explore its clinical value and the molecular mechanisms of TEM8 underlying the progression of LUAD. Our study found the elevation of TEM8 in LUAD cell lines and tissues. What's more, we observed that the TEM8 expression level was associated with tumor size, primary tumor, and AJCC stage, and LUAD patients with high TEM8 expression usually have a poor prognosis. Then, we conducted a series of experiments by the strategy of loss-of-function and gain-of-function, and our results suggested that the knockdown of TEM8 suppressed proliferation, migration, and invasion and induced apoptosis in LUAD whereas overexpression of TEM8 had the opposite effect. Molecular mechanistic investigation showed that TEM8 exerted its promoting effects mainly through activating the Wnt/ß-catenin signaling pathway. In short, our findings suggested that TEM8 played a crucial role in the progression of LUAD by activating the Wnt/ß-catenin signaling pathway and could serve as a potential therapeutic target for LUAD.

15.
Oxid Med Cell Longev ; 2021: 8889195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646427

RESUMO

Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.


Assuntos
MicroRNAs/metabolismo , Miocárdio/metabolismo , Sirtuína 1/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Remodelação Ventricular/fisiologia
16.
Med Oncol ; 38(10): 127, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34523032

RESUMO

Although patients with early localized prostate cancer can survive longer, castration-resistant prostate cancer (CRPC) has gradually emerged with the use of androgen deprivation therapy (ADT). N-Myc and TEM8 play a vital role in the progression of several cancer types. However, the underlying mechanism of how N-Myc and TEM8 promote the progression of prostate cancer remains unclear. In this study, the expression of N-Myc and TEM8 was detected in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) tissues by immunohistochemistry (IHC). LNCaP cell lines were maintained in RPMI 1640 medium supplemented with 10% charcoal-stripped fetal bovine serum. Subsequently, R language software was used to verify our results. Tubule formation assay of human umbilical vein endothelial cell (HUVEC) was conducted to examine the effect of N-Myc and TEM8 overexpression on angiogenesis in prostate cancer cells. IHC results showed a positive correlation between the expression of N-Myc and TEM8 in prostate cancer tissues. Further analysis showed that N-Myc and TEM8 were associated with clinicopathological features and poor prognosis in prostate cancer patients. Moreover, the overexpression of N-Myc and TEM8 promoted proliferation of prostate cancer cells and angiogenesis. Additionally, N-Myc and TEM8 overexpression was associated with therapeutic resistance. We further found that N-Myc promoted angiogenesis and therapeutic resistance in prostate cancer via TEM8. Hence, targeting N-Myc/TEM8 pathway in prostate cancer would be a novel therapeutic strategy to enhance the treatment of prostate cancer patients.


Assuntos
Antagonistas de Androgênios/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas dos Microfilamentos/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neovascularização Patológica/patologia , Hiperplasia Prostática/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Superfície Celular/metabolismo , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteína Proto-Oncogênica N-Myc/genética , Prognóstico , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Neoplasias de Próstata Resistentes à Castração/irrigação sanguínea , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/química , Receptores de Superfície Celular/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
17.
Am J Transl Res ; 13(8): 8804-8818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539996

RESUMO

t(6;11) translocation renal cell carcinoma (RCC) is classified as a subset of the MiT family translocation RCCs and characterized by harboring the Alpha-TFEB fusion gene. However, the development mechanism of this tumor and its effective treatment have not been fully identified yet. The purpose of this study was to explore the relationship between TFEB and BCL-2 in Alpha-TFEB stably transfected cell lines and in t(6;11) RCC tumor tissue. An Alpha-TFEB eukaryotic expression vector was constructed and stably transfected into CaKi-2 and HK-2 cells. RT-PCR and real-time RT-PCR were used to measure the mRNA expressions of TFEB and BCL-2, and immunohistochemistry, Western blot and dual immunofluorescence assays were used to evaluate the TFEB and BCL-2 protein expressions. MTT proliferation assays and flow cytometry were also performed. Furthermore, luciferase reporter assays were used to evaluate the BCL-2 promoter activity. An Alpha-TFEB eukaryotic expression vector was successfully constructed and stably transfected into CaKi-2 and HK-2 cells (named CaKi-2-TFEB and HK-2-TFEB cells). Compared with the CaKi-2 and HK-2 groups, the TFEB and BCL-2 mRNA expression levels were significantly upregulated in the CaKi-2-TFEB and HK-2-TFEB groups respectively. The TFEB and BCL-2 protein expressions showed a similar result. The overexpression of TFEB and BCL-2 promoted cell proliferation and inhibited cell apoptosis. Moreover, the overexpression of TFEB upregulated the promoter activity of BCL-2. Our data suggest that the overexpression of TFEB promotes BCL-2 expression by upregulating its promoter activity and ultimately results in the development of t(6;11) translocation RCC. BCL-2 inhibitors may serve as potential therapeutic targets for t(6;11) translocation RCC.

18.
Food Funct ; 12(15): 6755-6765, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34116563

RESUMO

Neointimal hyperplasia is the major cause of carotid stenosis after vascular injury, which restricts the long-term efficacy of endovascular treatment and endarterectomy in preventing stenosis. Ginsenoside Re (Re) is a major active ingredient of ginseng having multifaceted pharmacological effects on the cardiovascular system, and is a potential treatment for restenosis. In this study, we demonstrated that Re treatment significantly inhibited vascular injury-induced neointimal thickening, reduced the intimal area and intima/media (I/M) ratio, increased the lumen area, and inhibited pro-inflammatory cytokines. In cultured A7R5 cells, Re inhibited LPS-induced proliferation and migration as evidenced by suppressed colony formation and shortened migration distance, accompanied by the downregulated expression of pro-inflammatory cytokines. Re promoted VSMC apoptosis induced by balloon injury in vivo and LPS challenge in vitro. Moreover, Re inhibited autophagy in VSMCs evoked by balloon injury and LPS as supported by reduced LC3II and increased p62 expressions. Suppression of autophagy with the specific autophagy inhibitor spautin-1 efficiently inhibited LPS-induced cell proliferation and inflammation and promoted caspase-3/7 activities. Mechanistically, we found that Re attenuated Ras/ERK1/2 expression in VSMCs in vivo and in vitro. The MEK1/2 inhibitor PD98059 showed similar effects to Re on cell proliferation, migration, apoptosis, and the levels of autophagy and cytokines. In conclusion, we provided significant evidence that Re inhibited vascular injury-induced neointimal thickening probably by promoting VSMC apoptosis and inhibiting autophagy via suppression of the Ras/MEK/ERK1/2 signaling pathway.


Assuntos
Ginsenosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neointima , Substâncias Protetoras/farmacologia , Animais , Hiperplasia , Masculino , Neointima/metabolismo , Neointima/patologia , Ratos , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
19.
J Biol Chem ; 295(46): 15650-15661, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32893190

RESUMO

The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N-biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx Vmax, accompanied by a decreased influx Kt (4.5-fold) and Ki (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.


Assuntos
Transportador de Folato Acoplado a Próton/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Cisteína/química , Cisteína/metabolismo , Deficiência de Ácido Fólico/patologia , Células HeLa , Humanos , Cinética , Síndromes de Malabsorção/patologia , Metotrexato/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Transportador de Folato Acoplado a Próton/química , Transportador de Folato Acoplado a Próton/genética
20.
Biol Pharm Bull ; 43(10): 1490-1500, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788507

RESUMO

Depression is the most significant risk factor for suicide, yet the causes are complex and disease mechanism remains unclear. The incidence and disability rate of depression are very high and the efficacy of some traditional antidepressants is not completely satisfactory. Recently, some studies have found that benzofurans have anti-oxidation and anti-monoamine oxidase properties, which are related to depression. Euparin is a monomer compound of benzofuran, previous work by our team found that it improves the behavior of depressed mice. However, additional antidepressant effects and mechanisms of Euparin have not been reported. In this study, the Chronic Unpredictable Mild Stress (CUMS) model of mice was used to further investigate the effect and mechanism of Euparin on depression. Results showed that Euparin (8, 16 and 32 mg/kg) reduced depression-like behavior in mice compared with the model group. Meanwhile, all doses of Euparin were found to increase the contents of monoamine neurotransmitter and decrease monoamine oxidase and reactive oxygen species (ROS) levels in brain of depression mice. Additionally, Euparin restored CUMS-induced decrease of Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) and brain derived neurotrophic factor (BDNF) expression. These findings demonstrate that Euparin has antidepressant properties, and its mechanism involves the SAT1/NMDAR2B/BDNF signaling pathway.


Assuntos
Benzofuranos/farmacologia , Depressão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/complicações , Acetiltransferases/metabolismo , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Benzofuranos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/diagnóstico , Depressão/patologia , Depressão/psicologia , Modelos Animais de Doenças , Dopamina , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo , Organismos Livres de Patógenos Específicos , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...